Asymptotic partial decomposition of domain for spectral problems in rod structures
نویسندگان
چکیده
منابع مشابه
Method of asymptotic partial domain decomposition for non-steady problems: heat equation on a thin structure
The non-steady heat equation is considered in thin structures. The asymptotic expansion of the solution is constructed.The error estimates for high order asymptotic approximations are proved. The method of asymptotic partial domain decomposition is justified for the non-steady heat equation. AMS subject classifications: 35B25, 35B40, 35B27
متن کاملDomain Decomposition for Heterojunction Problems in Semiconductors
We present a domain decomposition approach for the simulation of charge transport in heterojunction semiconductors. The problem is characterized by a large variation of primary variables across an interface region of a size much smaller than the device scale, and requires a multiscale approach in which that region is modelled as an internal boundary. The model combines drift diffusion equations...
متن کاملSpace-time Domain Decomposition for Parabolic Problems Space-time Domain Decomposition for Parabolic Problems
We analyze a space-time domain decomposition iteration, for a model advection diiusion equation in one and two dimensions. The asymptotic convergence rate is superlinear, and it is governed by the diiusion of the error across the overlap between subdomains. Hence, it depends on both the size of this overlap and the diiusion coeecient in the equation. However, it is independent of the number of ...
متن کاملGeneralized spectral decomposition for stochastic nonlinear problems
We present an extension of the Generalized Spectral Decomposition method for the resolution of non-linear stochastic problems. The method consists in the construction of a reduced basis approximation of the Galerkin solution and is independent of the stochastic discretization selected (polynomial chaos, stochastic multi-element or multiwavelets). Two algorithms are proposed for the sequential c...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Mathématiques Pures et Appliquées
سال: 2007
ISSN: 0021-7824
DOI: 10.1016/j.matpur.2006.10.003